“猴子看到猴子做”是一句古老的格言,指的是na \ ive imitation,而没有深刻了解系统的潜在机制。的确,如果示威者可以访问模仿者(猴子)无法获得的信息,例如不同集合的传感器,无论模仿者如何完美地模拟其感知的环境(请参阅),试图重现演示者的行为(DO)都会导致不良的结果。在已经研究了演示者和模仿者之间的不匹配的情况下模仿学习在因果模仿学习的文献中(Zhang等,2020),但现有的解决方案仅限于单阶段的决策。本文研究了在顺序设置中必须使模仿者必须做出的因果模仿学习的问题每个情节的多个决定。我们制定了一个图形标准,这是确定因果模仿的可行性所必需的,以便在模仿者可以垫子的情况下提供条件尽管功能不同,但演示者的表现也很大。最后,我们提供了一种有效的算法来确定仿真性并用模拟证实我们的理论。
translated by 谷歌翻译
儿童学习的常见方式之一是模仿成年人。模仿学习的重点是从专家产生的示威,没有指定的绩效指标和未观察到的奖励信号的示威中进行的学习政策。模仿学习的流行方法首先直接模仿专家的行为政策(行为克隆)或学习优先考虑观察到的专家轨迹(逆强化学习)的奖励功能。但是,这些方法依赖于以下假设:专家用来确定其行为的协变量得到了完全观察。在本文中,当学习者和专家的感觉输入不同时,我们将放松这一假设和学习模仿学习。首先,我们提供了一个非参数,图形标准,该标准是从示范数据的组合和关于基础环境的定性假设组合来确定模仿的可行性的,该标准以因果模型的形式表示。然后,我们表明,当这种标准不满足时,通过利用专家轨迹的定量知识,模仿仍然可以是可行的。最后,我们开发了一个有效的程序,可以从专家的轨迹中学习模仿政策。
translated by 谷歌翻译
基于AI和机器学习的决策系统已在各种现实世界中都使用,包括医疗保健,执法,教育和金融。不再是牵强的,即设想一个未来,自治系统将推动整个业务决策,并且更广泛地支持大规模决策基础设施以解决社会最具挑战性的问题。当人类做出决定时,不公平和歧视的问题普遍存在,并且当使用几乎没有透明度,问责制和公平性的机器做出决定时(或可能会放大)。在本文中,我们介绍了\ textit {Causal公平分析}的框架,目的是填补此差距,即理解,建模,并可能解决决策设置中的公平性问题。我们方法的主要见解是将观察到数据中存在的差异的量化与基本且通常是未观察到的因果机制收集的因果机制的收集,这些机制首先会产生差异,挑战我们称之为因果公平的基本问题分析(FPCFA)。为了解决FPCFA,我们研究了分解差异和公平性的经验度量的问题,将这种变化归因于结构机制和人群的不同单位。我们的努力最终达到了公平地图,这是组织和解释文献中不同标准之间关系的首次系统尝试。最后,我们研究了进行因果公平分析并提出一本公平食谱的最低因果假设,该假设使数据科学家能够评估不同影响和不同治疗的存在。
translated by 谷歌翻译
We show for the first time that large-scale generative pretrained transformer (GPT) family models can be pruned to at least 50% sparsity in one-shot, without any retraining, at minimal loss of accuracy. This is achieved via a new pruning method called SparseGPT, specifically designed to work efficiently and accurately on massive GPT-family models. When executing SparseGPT on the largest available open-source models, OPT-175B and BLOOM-176B, we can reach 60% sparsity with negligible increase in perplexity: remarkably, more than 100 billion weights from these models can be ignored at inference time. SparseGPT generalizes to semi-structured (2:4 and 4:8) patterns, and is compatible with weight quantization approaches.
translated by 谷歌翻译
Neuromorphic systems require user-friendly software to support the design and optimization of experiments. In this work, we address this need by presenting our development of a machine learning-based modeling framework for the BrainScaleS-2 neuromorphic system. This work represents an improvement over previous efforts, which either focused on the matrix-multiplication mode of BrainScaleS-2 or lacked full automation. Our framework, called hxtorch.snn, enables the hardware-in-the-loop training of spiking neural networks within PyTorch, including support for auto differentiation in a fully-automated hardware experiment workflow. In addition, hxtorch.snn facilitates seamless transitions between emulating on hardware and simulating in software. We demonstrate the capabilities of hxtorch.snn on a classification task using the Yin-Yang dataset employing a gradient-based approach with surrogate gradients and densely sampled membrane observations from the BrainScaleS-2 hardware system.
translated by 谷歌翻译
A digital twin is defined as a virtual representation of a physical asset enabled through data and simulators for real-time prediction, optimization, monitoring, controlling, and improved decision-making. Unfortunately, the term remains vague and says little about its capability. Recently, the concept of capability level has been introduced to address this issue. Based on its capability, the concept states that a digital twin can be categorized on a scale from zero to five, referred to as standalone, descriptive, diagnostic, predictive, prescriptive, and autonomous, respectively. The current work introduces the concept in the context of the built environment. It demonstrates the concept by using a modern house as a use case. The house is equipped with an array of sensors that collect timeseries data regarding the internal state of the house. Together with physics-based and data-driven models, these data are used to develop digital twins at different capability levels demonstrated in virtual reality. The work, in addition to presenting a blueprint for developing digital twins, also provided future research directions to enhance the technology.
translated by 谷歌翻译
The concept of walkable urban development has gained increased attention due to its public health, economic, and environmental sustainability benefits. Unfortunately, land zoning and historic under-investment have resulted in spatial inequality in walkability and social inequality among residents. We tackle the problem of Walkability Optimization through the lens of combinatorial optimization. The task is to select locations in which additional amenities (e.g., grocery stores, schools, restaurants) can be allocated to improve resident access via walking while taking into account existing amenities and providing multiple options (e.g., for restaurants). To this end, we derive Mixed-Integer Linear Programming (MILP) and Constraint Programming (CP) models. Moreover, we show that the problem's objective function is submodular in special cases, which motivates an efficient greedy heuristic. We conduct a case study on 31 underserved neighborhoods in the City of Toronto, Canada. MILP finds the best solutions in most scenarios but does not scale well with network size. The greedy algorithm scales well and finds near-optimal solutions. Our empirical evaluation shows that neighbourhoods with low walkability have a great potential for transformation into pedestrian-friendly neighbourhoods by strategically placing new amenities. Allocating 3 additional grocery stores, schools, and restaurants can improve the "WalkScore" by more than 50 points (on a scale of 100) for 4 neighbourhoods and reduce the walking distances to amenities for 75% of all residential locations to 10 minutes for all amenity types. Our code and paper appendix are available at https://github.com/khalil-research/walkability.
translated by 谷歌翻译
As machine learning (ML) systems get adopted in more critical areas, it has become increasingly crucial to address the bias that could occur in these systems. Several fairness pre-processing algorithms are available to alleviate implicit biases during model training. These algorithms employ different concepts of fairness, often leading to conflicting strategies with consequential trade-offs between fairness and accuracy. In this work, we evaluate three popular fairness pre-processing algorithms and investigate the potential for combining all algorithms into a more robust pre-processing ensemble. We report on lessons learned that can help practitioners better select fairness algorithms for their models.
translated by 谷歌翻译
Federated Deep Learning frameworks can be used strategically to monitor Land Use locally and infer environmental impacts globally. Distributed data from across the world would be needed to build a global model for Land Use classification. The need for a Federated approach in this application domain would be to avoid transfer of data from distributed locations and save network bandwidth to reduce communication cost. We use a Federated UNet model for Semantic Segmentation of satellite and street view images. The novelty of the proposed architecture is the integration of Knowledge Distillation to reduce communication cost and response time. The accuracy obtained was above 95% and we also brought in a significant model compression to over 17 times and 62 times for street View and satellite images respectively. Our proposed framework has the potential to be a game-changer in real-time tracking of climate change across the planet.
translated by 谷歌翻译
We study the algorithm configuration (AC) problem, in which one seeks to find an optimal parameter configuration of a given target algorithm in an automated way. Recently, there has been significant progress in designing AC approaches that satisfy strong theoretical guarantees. However, a significant gap still remains between the practical performance of these approaches and state-of-the-art heuristic methods. To this end, we introduce AC-Band, a general approach for the AC problem based on multi-armed bandits that provides theoretical guarantees while exhibiting strong practical performance. We show that AC-Band requires significantly less computation time than other AC approaches providing theoretical guarantees while still yielding high-quality configurations.
translated by 谷歌翻译